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Visual Lyrics: Automatic Generation of Animated Lyric Videos
Anonymous Author(s)

Figure 1: Visual Lyrics interface. The system analyzes a song’s audio and language features to suggest words that can be
highlighted with image , animation , or visual stylizations. On the Annotation Panel (left), suggestions appear as annotations
over lyrics (a). The user can edit the annotations to steer the creative direction of the lyric video. The Generation Panel (right)
displays generated animated scenes for each line of lyrics (b). The user can see intermediate LLM instructions for creating the
images, animations, and visuals (c). The user can regenerate new instructions or edit them manually for finegrained control.

ABSTRACT
Animated lyric videos transform song lyrics into dynamic visual
experiences, offering a powerful medium for artistic expression
and audience engagement. However, creating these videos is chal-
lenging, requiring expertise in audio, typography, graphic design,
and animation, making it inaccessible to novices. To address this
challenge, we introduce Visual Lyrics, an automatic animated lyric
video generation system with an intuitive text-driven interface for
creative control. We examined existing lyric videos to distill a tax-
onomy and design guidelines, informing the design of Visual Lyrics.
Our key insight is a multimodal music analysis pipeline based on
the taxonomy and leveraging LLM’s strong natural language un-
derstanding and code generation capabilities to synthesize creative
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and semantically meaningful animations. We collected a dataset of
over 300 code-driven creative text animations to serve as inspira-
tion for our LLM-driven pipeline, which we open source. In a user
study, Visual Lyrics enabled novices to easily create high-quality
animated lyric videos with high ratings of enjoyment, inspiration,
and exploration.
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1 INTRODUCTION
An animated lyric video transforms song lyrics into dynamic visual
experiences, serving as a powerful medium for artistic expression
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and audience engagement. These videos have steadily grown in pop-
ularity, driven by music artists and content creators on platforms
like YouTube and TikTok.

However, creating these animations remains a challenging en-
deavor requiring expertise in multiple domains, such as audio, ty-
pography, graphic design, and animation. Current approaches often
involve manual animation in tools like After Effects [1], which is
time-consuming (often spending hours to create a few seconds of
animation) and requires significant technical skill to achieve quality
results, making it inaccessible to many content creators.

Many creators attempt to streamline this process through tem-
plates or preset animations [3, 4], but these solutions often produce
generic results that miss the opportunity to capture the semantics of
the lyrics and emotions of the song. This is important because while
basic karaoke-style videos provide functional text synchronization,
there is an opportunity to create much richer and engaging videos
that exhibit more creativity and aesthetic beauty.

Prior work has explored automated approaches for more con-
strained subtasks like overlaying static lyrics on videos [30] or
animating static vector graphics [29, 39], but the challenge of au-
tomatically generating expressive animated lyrics for entire songs
end-to-end remains largely underexplored. Our key insight is that
LLMs have an increasingly strong code generation capability [17].
By leveraging LLMs’ understanding of natural language and their
code generation abilities, we can create creative and semantically
meaningful animations that amplify musical lyrics.

In this paper, we present Visual Lyrics, an end-to-end pipeline
for automatically generating animated lyric videos. We begin by
examining existing lyric videos to distill a taxonomy of common
stylization effects in lyric videos and establish three design guide-
lines that inform the development of our system. Given a song,
Visual Lyrics analyzes it to identify language and audio features
based on our taxonomy, and generates matching code-driven an-
imations using HTML, CSS, and JavaScript. Visual Lyrics breaks
down the complex task of animated lyric video creation into three
stages: Planning, which determines which words to add stylization
effects to and what types of effects to use; Generation, which in-
volves conceptualizing the overall theme, creating image assets,
designing static layouts, and animating those layouts; and Valida-
tion, which implements feedback loops to ensure that each stage of
the generation process produces high-quality results. To enhance
the generation pipeline, we collected a dataset of code-driven cre-
ative text animations for retrieval-augmented generation, which
we open-source. In a user study, Visual Lyrics enabled novice users
to create high-quality animated lyric videos with high self-reported
ratings of enjoyment, inspiration, and exploration.

This research thus contributes:
• A taxonomy of stylization effects in animated lyric videos.
• Visual Lyrics, an end-to-end animated lyric video gen-

eration system with an intuitive text-driven interface for
creative control.

• A dataset of 306 code-driven, creative text animations.
• A user study demonstrating the utility of Visual Lyrics for

novice creators and informing the development of future
animated lyric creation tools.

2 RELATEDWORK
This work draws on prior research in automatic music video gener-
ation, kinetic typography, and generative animation.

2.1 Automatic Music Video Generation
Researchers have explored the automatic generation of videos to
accompany music, enhancing the listening experience through
adding a visual component. Many works focus on adding images
based on the lyrics. MusicStory [34] and Cai et al. [7] extracted
salient words (e.g., nouns) and queried online image repositories.
To establish visual coherence, Shin et al. [35] aligned visual content
with the song’s emotional tones. In this work, we create a visually
coherent concept for the entire lyric video, though going beyond
static images by also styling and animating the text displayed on
screen.

Another thread of research in this space addresses the technical
challenge of aligning lyrics with audio. Fujihara et al. [13] developed
an automatic lyrics-to-audio synchronization system and Goto et
al. [14] created the Songle platform for crowdsourcing lyric align-
ment. Recently, Ma et al. [30] introduced one of the first end-to-end
pipelines to automatically convert music videos (without lyrics)
into lyric videos. Most closely related to our work is TextAlive by
Kato et al. [20], which is among the first tools to offer interactive
authoring of lyric videos, animate text in sync with music. Kato and
Goto’s Lyric App [19] further provided environments for crafting
lyric-driven visuals. Both systems primarily rely on manual author-
ing by the user and have a relatively high learning curve for novice
users.

Our work builds on Kato et al.’s efforts with a focus on devel-
oping a fully automatic pipeline to support novice creators. We
leverage the strong natural language understanding and code gener-
ation capabilities of LLMs, enabling users to describe animations in
natural language and automatically synthesize flexible and creative
animations beyond predefined motion algorithms through code.

2.2 Kinetic Typography
Kinetic typography is a motion graphics technique where text is
animated to convey emotion, narrative, and emphasis beyond static
words. Early HCI researchers recognized its expressive power and
began developing tools to support authoring it. ActiveText [24] is
one of the first systems for authoring dynamic text, demonstrating
how text motion can enhance communication. Lee et al. developed
the Kinetic Typography Engine [23], which brought film-like visual
expressiveness to text. Its follow-up work, Kinedit [12], enabled
animators to apply presets for text motion in order to convey affect
in messages. However, these early systems were largely manual,
requiring designers to handcraft animations.

With the increasing popularity of video content, commercial
tools like Adobe Express [4] and Canva Magic Animate [3] offer
limited preset effects for animating content. Recent works by Li-
wenhan et al., including Creating Emordle [40] and Wakey-Wakey
[41], have explored automated methods for animating words based
on design heuristics and by mimicking character motions, taking
into account the emotional qualities of words.
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Building on previous insights from kinetic typography research,
our work draws on the expressive power of words to convey narra-
tive and emotional affect through an automated pipeline specifically
designed for lyric videos. Our approach considers both the audio
and language channels of music to generate animated kinetic ty-
pography.

2.3 Generative Animation
Beyond text, our work connects to the broader field of generative
animation, which involves methods for producing moving visuals
from high-level inputs (e.g., sketching, text, or code). Early sketch-
based systems like K-Sketch [9] and Draco [21] allowed users to
sketch motion paths for objects, enabling algorithmic approaches
that bring static illustrations to life using kinetic textures and user-
guided input.

Artists and researchers have long experimented with using code
to generate visuals of unique styles. For example, Processing [33]
in the 2000s has enabled creative custom animations through pro-
gramming. The generated animations are highly flexible, as they
can include any arbitrary visual or animation effect defined by rules
or code. However, they typically lack automatic planning, requiring
users to manually create generative rules. Being unable to interpret
songs or lyrics, early music visualizers or demo-scene animators
often reacted mainly to audio amplitude or beats, less on lyrical con-
tent or higher-level music structures. The challenge for our work
is to combine the flexibility of code-driven animation generation
with an automated understanding of a song’s key features, using
code to generate animations that follow the semantics of lyrics and
vocals to create meaningful visual experiences.

Over the past year, several works have shown that LLMs are
capable of generating code for rendering animations, as seen in
works like Keyframer [39] and LogoMotion [29]. However, these
explorations focus on more constrained tasks, such as animating
static vector graphics (Keyframer) and logos (LogoMotion). In this
work, we explore generating visually cohesive sequences of expres-
sive kinetic text effects, images, and animations for entire songs,
end-to-end.

3 DESIGN GOALS
We follow the methodology by Agrawala et al. [5] to identify guide-
lines by examining animated lyric video tutorials and existing ex-
amples of animated lyric videos. Our analysis included 20 tutorials,
featuring those from tool creators such as Adobe (the developer
of After Effects), as well as from various artists. We examined the
top 100 animated lyric videos sourced from YouTube using key-
words like “animated lyric video,” “kinetic typography video,” and
“motion lyric video.” Researchers manually filtered out videos of
low quality. From this analysis, we distilled three design goals to
inform the development of Visual Lyrics. These guiding design
goals include analyzing both the language and audio channels of
the music, supporting a wide range of stylizations, and maintaining
the readability of the text.

3.1 Taxonomy
From our analysis of existing animated lyric videos, we developed
a taxonomy of different types of words where editors commonly

add special stylizations to the lyrics (see Table 1). We categorized
them into three types: Image , Visual , and Animation . Image
refers to instances where editors add an additional supporting
graphic to the video, such as identifying visually-concrete objects
or metaphors that can be associated with objects. Visual involves
editors applying font stylizations to the words, such as stylized font
choice, font size, and font color. This is often used for words related
to size, color, emotional qualities, or depending on the energy of
the vocals (sung particularly loudly or quietly). Animation refers
to instances where editors animate the word itself, such as words
related to motion or words sung with special vocal attributes like
upwards or downwards pitch shift, word elongation, and vibrato.
From our observations, we identified that some stylizations are
based on the text (language features), while others are based on the
vocals (audio features).

3.2 Design Goal 1: Analyze Audio and Language
A creative animated lyric video should identify interesting oppor-
tunities to add special stylizations to words. As illustrated in Table
1, these opportunities can arise from either the lyrical aspects (lan-
guage features) or the vocal elements (audio features) of the song.
Current animated lyric authoring tools predominantly focus on
the language aspect (see Section 2.2). For instance, some tools iden-
tify visually concrete words [34] or specific words with emotive
attributes [35]. In this work, we build on our identified language
and audio features from our taxonomy to develop a multimodal
analysis pipeline (see Section 4.2).

3.3 Design Goal 2: Support Diverse Stylizations
From reviewing past videos, we observed that the implementation
of creative stylization effects can span a broad range of techniques.
These include altering the visual appearance of words in various
ways, applying custom animations, or creating new supporting
images (Table 1). Current tools primarily support preset effects
or focus on a single type of stylization, such as matching images
(Section 2.1), animating text (Section 2.2), or editing the visual
attributes of text [38]. In this work, we harness the rich flexibility
of code (e.g., CSS, JavaScript) to synthesize a diverse variety of
stylizations (see Section 4.3). To increase the quality of the code-
implemented stylization effects, we sourced a dataset of over 300
code-driven text animation effects (see Section 4.3.4).

3.4 Design Goal 3: Maintain Readability
While stylizing words with creative and expressive visuals and ani-
mations are appealing, ensuring the legibility of the text remains
crucial, and achieving a balance between the two is essential. Cur-
rent tools largely overlook this aspect, requiring users to manually
identify and correct readability errors. In this work, we implement
validations to automatically detect potential readability issues at
various stages of the generation process (see Section 4.4).

4 VISUAL LYRICS
We begin by illustrating how a user might use Visual Lyrics through
an example. Following this, we describe the technical implementa-
tion of Visual Lyrics, which consists of three primary components:
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Word Type Modality Description Common Effect Example
Visual Language Visually-concrete objects, such as

diamond or heart.
Image

Metaphor Language Abstract concepts corresponding to
metaphorical objects, such as airplane for
farewell or steel for strength.

Image

Size Language Size-related words, such as big or tiny. Font size

Color Language Color-related words, such as gold or red. Font color

Emotion Language Words with emotional attributes, such as
sweet or sad.

Font family or color

Energy Audio Words sung by the singer with a
louder/smaller volume.

Font size

Motion Language Motion-related words, such as shake or
bounce.

Semantic animations

Pitch shift Audio Words sung by the singer with a pitch
shift upwards/downwards.

Vertical movement or
trail animations

Elongation Audio Words sung by the singer with an
elongated emphasis.

Stretched or repeated
animations

Vibrato Audio Words sung by the singer with a vibrato. Pulsing or distortion
animations

Table 1: Taxonomy of Word Stylizations in Animated Lyric Videos. We categorize ten different types of word stylizations across
language and audio modalities, showing how the semantic properties of words and vocals can be visually represented through
different properties ( Image , Visual , and Animation ). Each category includes a description of the word type, the visual
effect that is commonly used, and an example usage.

Planning, Generation, and Validation. Planning involves prepro-
cessing the music and analyzing multimodal aspects of the vocals
and lyrics to extract relevant features. Generation includes concep-
tualizing the overall theme, creating image assets, generating static
layouts, and animating these layouts. Validation encompasses qual-
ity checks of outputs across the different stages of the generation
pipeline. To enhance the code generation output, we collected a

dataset of 306 creative text animation code snippets for retrieval
augmented generation, which we open source.

4.1 SystemWalkthrough
Taylor is a content creator who wants to create an animated lyric
video for her friend’s song: “Jiggle Jiggle” [18].
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Figure 2: System Overview. The pipeline consists of Planning (music preprocessing and multimodal analysis to produce
augmented lyrics), Generation (conceptualizing overall theme, creating image assets, designing static layouts, and animating
layouts), and Validation (feedback loops for quality checks at different stages of Generation) to produce the final animated
lyric video.

4.1.1 Annotating Lyrics. To begin, Taylor opens the Visual Lyrics
interface and sees the Annotation Panel on the left, where the song’s
lyrics are transcribed line-by-line (Figure 1a). She notices that the
lyrics are automatically annotated with three types of annotations:
Image , Animation , and Visual . These annotations are gener-
ated by the system after analyzing both the song’s language and
audio features.

A word with an Image annotation suggests that she could add
an image to the animated lyric video to visualize the word. For ex-
ample, “car”→ generate a car image. A word with an Animation
annotation suggests that she could animate the word itself to em-
phasize it. For example, “jiggle”→ apply a “jiggling” animation.
A word with a Visual annotation suggests that she could apply
visual stylizations to the word’s font attributes. For example, “red”
→ change the word’s color to red.

Taylor then customizes the annotations to tailor to her creative
preferences by adding or removing annotations for different words.

4.1.2 Generating Animations. On the right, Taylor sees the Gen-
eration Panel. She notices that the panel is divided into sections,
with each section corresponding to a line of the lyrics. Each section
contains the animated scenes generated for each line of lyrics (Fig-
ure 1b) and also includes generated instructions on how the system
implements the stylization effects for each annotated word in the
scene (Figure 1c).

For example, Taylor notices that for the word “money”, which
she has annotated with an Image annotation, the system has
created an image generation prompt: “a single dollar bill”
and has also generated an image below it. Instead of a single dollar
bill, Taylor wants a larger pile of money, so she manually edits the
textbox to read “a huge stack of dollar bills” and regenerates
the image by clicking the image’s regenerate button.

In addition, Taylor notices that for the word “jiggle”, which
she has annotated with an Animation annotation, the system
has suggested an LLM-generated instruction for implementing it.
However, she doesn’t like it very much. She wants to try something
different and clicks on the instruction’s regenerate button. She ends
up liking the suggestion: “hop randomly in place as if on a
hot surface”.

Taylor reviews the various scenes corresponding to different
lyric lines to finetune the stylizations according to her preferences.
She does this by either regenerating instructions and images (akin
to pulling a slot machine) or manually editing (to exert her own
creative input). She frequently switches between interface panels,

sometimes returning to the Annotation Panel to modify the anno-
tations, which are then reflected in the Generation Panel for more
precise edits. Additionally, she plays the entire video to evaluate
how the animated results look all together and synchronized with
the music. Here is an example of what Taylor’s final animated lyric
video could look like: Taylor’s version.

4.2 Planning
We first separate vocal and non-vocals in the music using the
Spleeter model [15]. We then transcribe the lyrics on the isolated
vocal track using WhisperX [6]. This transcription serves as the
foundation for two parallel annotation processes: audio annotations
and language annotations.

4.2.1 Audio Annotations. For audio annotations, we analyze the
audio characteristics of both the entire song and each word.

At the song level, we compute the average beats per minute
(BPM) and the average energy level. We determine BPM using
onset detection with a Butterworth low-pass filter [37] to reduce
noise, then apply peak analysis to identify beats. We determine
the song’s average energy by computing the Root Mean Square
(RMS) energy with overlapping windows of 2048 samples and a
hop length of 512 samples [31].

At the word level, we identify four categories of special words
based on their audio properties:

• High/low energy words: Words that have an RMS energy
above/below a threshold.

• Upward/downward pitch-shifted words: Words with large
upward/download shifts in pitch. We first identify the fun-
damental frequency with the YIN algorithm [10] using win-
dows of 1024 samples and a hop length of 256 samples, then
detect words with upwards/downward pitch shifts between
start and end of words above a threshold.

• Elongated words: Words with long sustained energies. We
first compute the RMS energy in windows of 512 sam-
ples with 128 sample overlap, then identify continuous
sequences of windows with an energy above a threshold
that spans over 30% of the word’s duration.

• Vibrato words: Words with oscillating frequencies. We first
count pitch oscillations, then check if the oscillation fre-
quency is in the range of 4Hz to 8Hz (i.e., typical vocal
vibrato frequency [11]).
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Figure 3: Example results for different types of annotations. Top row shows Image annotations with generated supporting
images (fiat with car image, for sure with thumbs up image, no slack with an image of a pair of shoes). Middle row shows
Animation annotations with dynamic text animations (jiggle jiggle jiggling, back spinning backwards, it folds being
folded). Bottom row shows Visual annotations with creative typography (red red in red color, six feet two in tall compact
font, relax with a faded color gradient). More animated examples here.

For each identified special word, we map it to a visual or anima-
tion effect (Figure 1a). Specifically, high/low energy words are em-
phasized with big/small text (visual word), pitch-shifted words are
emphasized with growing/shrinking animation (animation word),
elongated words are emphasized with stretching animation (ani-
mation word), and vibrato words are emphasized with oscillating
growing and shrinking animation (animation word).

4.2.2 Language Annotations. For language annotations, we use
LLMs to identify three categories of special words from the lyrics
(Table 1):

• Image words: Visually-concrete words that can be visual-
ized as physical objects (e.g., “sun” or “flower”) or metaphor-
ical concepts that can be visualized (e.g., steel for “strength”
or rose for “love”).

• Animation words: Words related to motion (e.g., “jump” or
“spin” or objects strongly associated with movement (e.g.,
“waves” or “arrow”).

• Visual words: Words that can be enhanced through font
attributes, including color (e.g., “blue” or “dark”), size (e.g.,
“big” or “tiny”), and emotional qualities that can be con-
veyed through font choice or color (e.g., “happy” or “ele-
gant”).

We call the annotated lyric transcript the “augmented lyrics”. For
each identified special word in the augmented lyrics, the LLM then
generates either a description on how to implement the creative
effect in HTML, CSS, and JavaScript (for animation and visual
words) or generates an image generation prompt that can be used
by a text-to-image model to generate a supporting image (for image
words) (Figure 1c).

4.3 Generation
Creating an animated lyric video consists of many components,
including conceptualizing an overall theme, creating image assets,
organizing text and images into layouts, and adding dynamic an-
imations to each element. In Visual Lyrics, we create a separate
“agent” for each task, including the Creator Director, the Illustrator,
the Layout Designer, and the Animator.

4.3.1 Conceptualizing Overall Theme. The Creative Director agent
establishes a theme specification for the entire animated lyric video
to ensure a consistent visual style and animation pace across an-
imated scenes. The Creative Director uses an LLM to take in the
computed song-level audio features (BPM and average energy level)
and the complete song lyrics as input and generates an overall mood
description, color scheme (using HEX values), typography (using
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Google Fonts), animation style description, and background style
description.

4.3.2 Creating Image Assets. The Illustrator agent generates im-
ages for words marked with image annotations. The Illustrator
generates images using the FLUX.1 Schnell text-to-image model
[22] with Low-Rank Adaptation (LoRA) finetuning [16] on Apple
emoji designs. The FLUX.1 Schnell model is capable of generat-
ing high-quality images with fast performance using only 4 steps.
The LoRA finetune allows FLUX.1 Schnell to generate emoji-style
designs suitable for animated lyric videos with minimal prompt
engineering. The Illustrator then removes the backgrounds of the
generated images using ViTMatte [42].

4.3.3 Designing Static Layouts. The Layout Designer agent gener-
ates static layouts for each line of the lyrics (i.e., each line is a scene
in the animated lyric video). Given the augmented lyrics, the theme
specification, and the generated image assets, the Layout Designer
uses an LLM to generate a layout with HTML/CSS code, the Layout
Designer uses an LLM to generate a layout with HTML and CSS
code. It is worth noting that we chose to generate code instead of
asking the LLM to compose a layout using bounding-box coordi-
nates [27]. In our early implementations, we found that LLMs have
limited ability to generate correct numeric values for positioning,
which often results in layouts with misalignment and overlap issues.
Instead, HTML/CSS’s relative positioning and built-in responsive
layout system proved to be more robust. In addition, we can use
code to apply complex animation effects that involve depth and
physics properties to these layouts (Section 4.3.5).

4.3.4 Dataset. Inspired by prior research in retrieval augmented
generation [26], we enhance the quality of the LLM-generated
code-driven text animations providing the LLM with a collection
of high-quality examples, handcrafted by designers, to serve as
inspiration. We collected 306 text animation code snippets from
CodePen [2], an online community for sharing code snippets. These
snippets were sourced from public “pens” and were selected based
on their implementation using HTML, CSS, and JavaScript. The
selection process was manually curated by the researchers. We
searched public pens using keywords such as “text effects”, “text
animation”, and “CSS text.” Overall, the collected code snippets
are diverse and encompass a wide range of custom animations
and visual stylizations (see Figure 4). Some of the most frequently
appearing keywords in their titles include “shadow”, “3D”, “glitch”,
“neon”, and “gradient”. Among collected code snippets, some focus
more on visual stylizations of static text, such as neon glow retro
style text, Lego-like 3D text, and metallic texture text. Others focus
on the animation of texts, such as text with liquid physics-like
behavior, disappearing text mimicking smoke, and text that appears
to be written with handwriting. The full dataset can be viewed here.

4.3.5 Adding Animations. The Animator agent adds animations
to the static elements and generates subtle animated background
elements. Given a static layout, the augmented lyrics, and the theme
specification, the Animator uses an LLM to add animation effects
using HTML, CSS, and JavaScript code. In addition, the Animator
generates subtle decorative elements for the background, such as
animated gradients, 3D particles, and geometric shapes.

Figure 4: Examples from our dataset of 306 creative text
animation code snippets collected from CodePen. See full
dataset here.

4.4 Validation
Throughout the Generation pipeline, we validate the outputs of
each agent with the Creative Director agent with feedback loops.

4.4.1 Illustrator Validation. The Creative Director first uses LLaVA
[28], a state-of-the-art captioning model, to caption the images.
The Creative Director, then embeds both the original image genera-
tion prompt and the LLaVA-generated caption using CLIP [32] and
computes their cosine similarities. CLIP encodes text into semantic
embeddings. If the similarity is below a threshold, the Illustrator is
asked to regenerate a new image.

4.4.2 Layout Designer Validation. The Creative Director validates
the static layouts through heuristics that check for the following
constraints:

• All elements must be within visible bounds.
• All text must be readable (via OCR [36]) and not occluded

by other elements.
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Figure 5: Usage Frequency of Annotation Types. All three types of annotations were added onto the Annotation Panel relatively
equally. Users generally regenerated and manually edited Image and Animation annotations more.

• Images should be appropriately sized (maximum 80% of
container height).

If the constraints are not satisfied, the Layout Designer is asked
to correct the layout.

4.4.3 Animator Validation. The Creative Director validates the
animated layouts through heuristics that check for the following
constraints:

• All elements must be within visible bounds.
• There should not be any non-renderable animation code.
• All text must be readable during the animations (via OCR

[36]).
• Images should have subtle animations (not static).

If the constraints are not satisfied, the Animator is asked to
correct the animations

After the Creative Director approves the final animated layouts,
we obtain a sequence of animated lyrics that follows a cohesive
theme. Overall, Visual Lyrics generates creative animated lyric
videos with complementary images, word stylization, and dynamic
animation, driven by both audio and lyrical analysis, while main-
taining a consistent visual concept. Figure 3 show some examples
created with Visual Lyrics (see animated examples here).

5 USER STUDY
We conducted a user study to understand how Visual Lyrics could
support novice creators in making animated lyric videos, its po-
tential to be integrated into their personal workflows, and identify
improvement areas.

5.1 Participants
We invited ten participants (P1-P10, 7 female and 3 male, aged 18
to 38) to participate in a one-hour user study. Participants were
recruited through postings on Slack channels at our institution and
by word-of-mouth. They had no prior exposure to the Visual Lyrics
system or concept before the study. The participants were novice
creators familiar with watching animated lyric videos (self-rated
familiarity 𝜇=4.00, 𝜎=1.05 on a 5-point Likert scale from 1=low
familiarity to 5=high familiarity) but less familiar with creating

them (self-rated familiarity 𝜇=1.80, 𝜎=1.48). During the study, par-
ticipants accessed Visual Lyrics through a web browser, shared
their screens, and verbally explained their actions and thoughts
(think-aloud).

5.2 Measures
We asked participants to complete questionnaires to capture their
perceptions of creativity and usability while using Visual Lyrics.
We assessed creativity using the Creativity Support Index (CSI) [8],
which measures enjoyment, inspiration, exploration, expressive-
ness, immersiveness, and effort/reward trade-off. Usability was as-
sessed using the System Usability Scale (SUS) [25], which evaluates
perceived confidence, ease of learning, quality of integration be-
tween different components, ease of use, and likelihood of frequent
use. Additionally, we asked participants to rate the satisfaction of
their overall usage experience and the quality of the final results
they created. All questionnaire items were rated on a 5-point Lik-
ert scale (5=strongly agree, 1=strongly disagree). Furthermore, we
logged user interaction data, including when participants added
or removed annotations, regenerated stylization instructions, and
manually edited stylization instructions.

5.3 Procedure
5.3.1 Introduction (10 minutes). Participants provided informed
consent, completed a background questionnaire, and then received
an introduction to Visual Lyrics, as described in Section 4.

5.3.2 Reproduction Task (15 minutes). Participants were asked to
create an animated lyric video for the song “Jiggle Jiggle,” as de-
scribed in Section 4.1. They were given a brief that guided them
through the various components of the system to create the video.

5.3.3 Free Creation Task (20 minutes). Participants were asked to
freely explore Visual Lyrics and create an animated lyric video.
They could use their own song or choose from a selection of twelve
songs encompassing various artists and genres, such as pop, R&B,
K-pop, and rap.

5.3.4 Post-Study (15 minutes). Participants completed question-
naires that assessed their perceived sense of creativity, usability,
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Figure 6: Usability ratings measured with SUS [25].

overall usage experience, and the quality of their final creation (see
Section 5.2). Additionally, participants completed a free-response
questionnaire asking about their overall experience of using Visual
Lyrics, whether they could see Visual Lyrics being integrated into
their personal workflows, and areas for improving the system.

5.4 Results, Discussion, and Future Work
All participants completed the reproduction and free creation tasks.
Participants were generally satisfied with the overall usage ex-
perience (𝜇=4.40, 𝜎=0.52, 5-point Likert Scale) and with the final
animations they created (𝜇=4.50, 𝜎=0.71). Users suggested areas for
future improvements. Example user creations can be viewed here.

5.4.1 Helping Novice Users CreateQuality Animations. Participants
generally reported high ratings for usability measured with the Sys-
tem Usability Scale, including the quality of integration between the
tool’s different components (𝜇=4.80, 𝜎=0.42, 5-point Likert Scale),
ease of learning (𝜇=4.60, 𝜎=0.70), and ease of use (𝜇=4.30, 𝜎=0.95).
Overall, participants expressed that they were able to create
high quality animations with little manual effort: “I spent
maybe a minute deciding [which] words to highlight in the cho-
rus. . . and the tool was good at getting creative animations that
probably would have taken me hours in CapCut (P2)”.

Participants commented that the dual interface design (Anno-
tation Panel and Generation Panel) supported a natural workflow:
“[I could use] the left panel for choosing what to emphasize and
the right panel for refining how those emphasizations looked (P8)”.
In particular, participants commented how the tool helped stream-
line the typically highly technical and fragmented process: “The
technical barrier to entry for animation is usually so high. . . I don’t
have to worry about finding compatible fonts, designing graphics,
or how to keyframe specific motion effects (P2)”. For improvement,
P3 suggested allowing users to edit the automatically generated
theme specifications. Similarly, P9 wished to be able to edit the
color theme selections.

The validation mechanisms were valuable for the novice partic-
ipants (Design Goal 3). P10 observed that “the built-in validation
[was] like having an expert designer looking over my shoulder”,
when the system adjusted animations to prevent the text from being

Figure 7: Creativity support ratings measured with CSI [8].

off-screen. P2 noted, “When I added too many image elements to
one video, [the tool automatically] adjusted their sizes and position-
ing to make sure that the text remained the main focus”. For future
extension, P5 suggested giving users control over the placement of
different elements in the animated scene, as well as the ability to
specify image movement, such as by sketching a motion path.

5.4.2 Supporting Flexible Prototyping of Diverse Stylizations. Par-
ticipants generally reported high ratings for creativity measured
with the Creativity Support Index, including enjoyment (𝜇=4.60,
𝜎=0.70), inspiration (𝜇=4.50, 𝜎=0.53), exploration (𝜇=4.30, 𝜎=0.95),
and effort/reward tradeoff (𝜇=4.70, 𝜎=0.48). Overall, participants
expressed that the tool helped them quickly explore a di-
verse range of animations and often inspired them with new
ideas (Design Goal 2): “I was able to switch between [annotation]
types for the same word and quickly visualize completely different
results. . . fire as a flame image, as a red-orangish gradient text style,
as a flickering animation effect. . . I found myself deliberately ex-
perimenting just to see the possibilities of each approach (P7)”. To
enable greater flexibility, P2 suggested the ability to apply multiple
types of annotations to the same word for future work. Figure 5
shows a relatively equal distribution among the different added
annotation types, which may suggest that participants found value
in all types of stylizations, rather than relying solely on one type.

Participants were generally more satisfied with the automati-
cally generated visual stylizations, resulting in fewer regenerations
and less manual editing (Figure 5). We observed that participants
most commonly edited image instructions to add specificity, such
as changing “gold coin” to “a shimmering stack of gold
coins”. On the other hand, they primarily made animation edits to
modify intensity, such as changing “bouncing up and down” to
“bouncing gently up and down”. Our interaction logs show the
tool supporting different working styles among participants. Some
participants focused on first annotating the lyrics, then diving into
fine-grained editing (P2, P6, P8). Other participants had regular
alternations between annotating and editing (P5, P7, P10).

Participants felt that the automatically suggested annotations
were helpful in “overcoming a blank canvas (P10)”: “I like how the
lyric is auto-scanned and words are annotated already so there’s
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some sort of example to start from (P3)”. In particular, the audio-
based annotation suggestions were appreciated by participants,
who noted that they led to unexpected discoveries (Design Goal 1),
such as the “oscillating animation of the word ‘heart’ matching
the oscillating voice of the singer [vibrato] (P9)”. P5 commented
that “this first layer of suggestions was helpful for scaffolding...
allowing [them] to begin the creation process confidently”.

6 CONCLUSION
This research presents Visual Lyrics, an end-to-end system for au-
tomatic animated lyric video generation. Visual Lyrics adopts a
multimodal song analysis pipeline designed around a taxonomy of
stylization effects and leverages LLMs’ strong code generation ca-
pabilities to create dynamic and semantically matching animations.
Feedback from novice creators using Visual Lyrics demonstrated
that the tool helped them create high-quality animations with low
manual effort, and they were able to use it to quickly explore a
diverse range of animations, often being inspired with new ideas.
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